SHORT COMMUNICATIONS 397

BBA 73079

Variability in ouabain-induced inhibition of human erythrocyte membrane (Na+-K+)-ATPase

Part of the evidence for the relationship between the transport of Na⁺ and K⁺ across erythrocyte membranes and the (Na+-K+)-activated membrane-bound ATPase rests on the observation that concentrations of cardiac glycosides inhibiting the active cation exchange also inhibit the stimulatory effect of Na+ and K+ on the enzymecatalyzed hydrolysis of ATP1. Half maximal inhibition with the most commonly used cardiac glycoside, ouabain, occurs at concentrations of o.1 μ M with approx. 95% inhibition at concentrations of I-I00 μ M². Therefore, when ouabain failed to regularly inhibit (Na+-K+)-ATPase in erythrocyte membranes which we were studying, we tested the inhibitory effect of ouabain against the (Na+-K+)-stimulated ATPase of 11 consecutive erythrocyte membrane preparations. Human erythrocyte membranes were prepared from outdated blood stored in acid-citrate-dextrose by the technique of stepwise osmotic lysis³. In membrane Preps. 1 and 2, a 5-step lysis was used and yielded pink-red material, while in Preps. 3-11, a 6-step lysis was used and yielded essentially white membranes. Erythrocyte membrane ATPase was assayed using the method of Post et al.2. For "total" ATPase approx. I mg of membrane protein was incubated for I h in a 3.0-ml volume with 3 mM ATP, 3 mM MgCl₂, 80 mM NaCl, 33 mM KCl and 20 mM Tris buffer (pH 7.4); the P₁ released was measured⁴. Mg²⁺-ATPase activity was determined in parallel tubes incubated without addition of NaCl or KCl; however, the actual concentrations of Na⁺ and K⁺ in these tubes were 7.5-9.0 mM and 0.1 mM, respectively, as measured by flame photometry. The difference between the total ATPase and Mg²⁺-ATPase represented (Na⁺-K⁺)-ATPase. Protein was determined using Armour's recrystallized bovine plasma albumin as the standard⁵. Ouabain, strophanthidin and oligomycin were added to tubes containing the constituents for the total ATPase assay to determine their inhibitory action against erythrocyte membrane (Na+-K+)-ATPase.

The results of the studies on ouabain inhibition appear in Table I. Complete ouabain inhibition of (Na $^+$ -K $^+$)-ATPase was observed in Preps. 1 and 2 which were reddish. Ouabain inhibition of (Na $^+$ -K $^+$)-ATPase of hemoglobin-free membranes (Preps. 3–11) was incomplete and erratic with a mean inhibition of 28 % in the last 9 preparations at ouabain concentrations of 0.5–1.0 mM.

Two other known inhibitors of erythrocyte membrane (Na⁺-K⁺)-ATPase were tested. Strophanthidin, an aglycone, has been reported to inhibit erythrocyte membrane (Na⁺-K⁺)-ATPase at concentrations of o.1 mM⁶. However, even with 1.0 mM of strophanthidin, a complete inhibition of (Na⁺-K⁺)-ATPase was not observed (Table II). In contrast, oligomycin, an antibiotic chemically unrelated to either ouabain or strophanthidin, completely inhibited (Na⁺-K⁺)-ATPase, and the inactivation curve obtained was essentially parallel to that obtained by Blake et al.⁷ (Table II). It has been reported that when human erythrocyte membranes are gently disrupted by controlled sonication⁸ or by treatment with low concentrations of sodium dodecyl sulfate⁹, there is a partial loss of the ouabain inhibition of (Na⁺-K⁺)-ATPase, along with the appearance of a stimulation of Mg²⁺-ATPase by addition of either Na⁺ or K⁺. Two membrane preparations were studied to determine whether their Mg²⁺-ATPase could be stimulated by either Na⁺ or K⁺ (Table III). The (Na⁺-K⁺)-

ATPase of membrane Preps. 10 and 11 (Table I) were inhibited by ouabain to the same degree; however, Prep. 10 exhibited a partial stimulation by K^+ addition, while Prep. 11 followed the classical pattern and required the simultaneous presence

TABLE I ATPase activity expressed as μ moles P_i per h per mg protein.

Membrane Prep. No.	Total ATPase	Mg ²⁺ -ATPase		Ouabain concentration (mM)	Ouabain inhibition of (Na+-K+)-ATPase (%)*
I	2.60	1,21	1.18	1.0	102
2	1.61	1.04	1.02	1.0	104
3	1.25	0.87	1.18	1.0	īŚ
v	0.96**	0.52	0.82	1.0	32
			0.85	O. I	25
			0.91	0.01	1.1
+	1.82	1.03	1.97	O, I	О
5	2.68	2.00	2.54	0.5	2 I
6	2.53	1.88	2.21	0.5	49
7	2.03	1.43	1.93	0.5	17
8	2.02	1.36	2.00	0.5	3
9	2.99	1.33	2.31	1.0	41
10	3.13	2.II	2-57	1.0	55
ΙΙ	2.I2	1.30	1.75	1.0	45

^{*} Ouabain inhibition of (Na+-K+)-ATPase =

 $\frac{-A1 \, \text{Pasc}}{\cot \text{al ATPase}} = \frac{\cot \text{al ATPase} - \cot \text{al ATPase} \text{ with added ouabain}}{\cot \text{al ATPase} - \text{Mg}^{2+} - \text{ATPase}} \times \text{100.}$

TABLE II $\label{eq:attraction} \mbox{ATPase activity expressed as μmoles P_i per h per mg protein.}$

Membrane Prep. No.	ATPase with addition	n	ATP as e activity	Inhibition of (Na^+-K^+) -ATPase $(\%)$
7	*Total ATPase		1.07	
/	Mg ²⁺ -ATPase		0.50	_
	Total ATPase			
	+ strophanthidi	n, 1.0 mM	0.69	67
	•	0.5 mM	0.69	67
		o, r mM	0.80	47
	Total ATPase			
	+ oligomycin,	40 μg/ml	0.50	100
		20 μg/ml	0.54	93
		$8 \mu \text{g/ml}$	0.58	86
		$\mu g/ml$	0.69	67
10	Total ATPase		3.13	_
	Mg ²⁺ -ATPase		2.11	
	Total ATPase			
	+ oligomycin,	30 μg/ml	2.13	98

^{*} Membrane Prep. 7 had been stored in the frozen state for 5 days.

Biochim. Biophys. Acta, 183 (1969) 397-400

 $^{^{\}star\star}$ Same preparation reassayed after being stored for 2 weeks in a frozen state.

of both cations for stimulation. The ouabain preparations used were tested for their ability to inhibit influx of K⁺ into rabbit erythrocytes¹⁰ (Table IV). Since there is some passive influx of K⁺ into erythrocytes, as well as some exchange diffusion with Na⁺ (ref. 11), the ouabain-induced inhibition of the active K⁺ influx is probably greater than 87% and indicates that we were using a biologically active material.

TABLE III ATPase activity expressed as μ moles P_i per h per mg protein.

Membrane Prep. No.	Mg ²⁺ -ATPase	Mg ²⁺ -ATPasc + 30 mM K ⁺	Mg ²⁺ -ATPase + 100 mM Na ⁺	Total ATPase (Mg ²⁺ -ATPase + 30 mM K ⁺ + 100 mM Na ⁺)	Total ATPase + 1 mM ouabain
10	2.11	2.64	2.13	3.13	2.57
11	1.30	1.22	1.22	2.12	1.75

TABLE IV

	Influx of K ⁺ (µmoles K ⁺ per min per ml erythrocytes)		
Control	6.10-8		
Ouabain, 1.0 mM	0.8·10 ⁻⁸		

Biologically active ouabain incompletely inactivates (Na⁺-K⁺)-ATPase in erythrocyte membranes, while oligomycin inhibition of (Na⁺-K⁺)-ATPase is preserved. The fact that the effectiveness of ouabain inhibition varies among different membrane preparations (seemingly more effective in less rigorously prepared membranes) suggests that in certain preparations a ouabain-responsive site is impaired. However, this loss of ouabain responsiveness is not correlated with loss of Na⁺-K⁺ activation of the enzyme system nor with oligomycin inhibition. The results suggest that ouabain does not act directly on the (Na⁺-K⁺)-ATPase enzyme.

This work was supported by grant No. $\text{I-F}_3\text{-HE-35}\,635\text{-o}\text{I}$ from the National Institutes of Health.

Department of Medicine, Stanford University Medical Center, Stanford, Calif. 94305 (U.S.A.) STANLEY L. SCHRIER*

Department of Biophysics, Weizmann Institute of Science, Rehovoth (Israel) Eldad Giberman Ephraim Katchalski

^{*} Please send reprint requests to Dr. Stanley L. Schrier.

- I J. C. Skou, Physiol. Rev., 45 (1965) 596.
- ² R. L. Post, C. R. Merritt, C. R. Kinsolving and E. D. Albright, *J. Biol. Chem.*, 235 (1960) 1796.
- 3 S. L. Schrier, Biochim. Biophys. Acta, 135 (1967) 591.
- 4 C. H. FISKE AND Y. SUBBAROW, J. Biol. Chem., 66 (1925) 375.
- 5 O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR AND R. J. RANDALL, J. Biol. Chem., 193 (1951) 265.
- 6 D. C. Tosteson, P. Cook and R. Blount, J. Gen. Physiol., 48 (1965) 1125.
- 7 A. BLAKE, D. P. LEADER AND R. WHITTAM, J. Physiol., 193 (1967) 467.
- 8 A. ASKARI AND J. C. FRATANTONI, Biochim. Biophys. Acta, 71 (1963) 232.
- 9 P. C. Chan, Biochim. Biophys. Acta, 135 (1967) 53.
- 10 E. GIBERMAN, Arch. Biochem. Biophys., 124 (1968) 543.
- 11 J. HOFFMAN, Circulation, 26 (1962) 1201.

Received March 25th, 1969

Biochim. Biophys. Acta, 183 (1969) 397-400